Foto von Philipp Reiß

Dr.-Ing. Philipp Reiß

Technische Universität München

Lehrstuhl für Raumfahrttechnik (Prof. Walter)

Postadresse

Postal:
Boltzmannstr. 15
85748 Garching b. München

Forschung

In-Situ thermal extraction of volatiles from lunar regolith

Lunar regolith sample handling

Lunar in-situ resource utilisation

Veröffentlichungen

ORCID

ResearchGate

 

Erstauthor-Publikationen

Reiss, P. and Hager, P. (2013) ‘Investigation of the flow characteristics of lunar regolith simulants under reduced gravity and vacuum on a partial-g parabolic flight’, EGU General Assembly, p. EGU2013-7741-2.

Reiss, P., Hager, P. and Hoehn, A. (2013) ‘Hopper-flow of lunar regolith simulants in reduced gravity and vacuum’, 7th Regional Americas Conference of the International Society of Terrain-Vehicle Systems.

Reiss, P. and Walter, U. (2013) ‘Compaction of lunar regolith simulants under reduced gravity’, European Planetary Science Congress. EPSC Abstracts, p. EPSC2013-431-2.

Reiss, P. et al. (2014) ‘Technological challenges for in-situ investigation of lunar resources’, European Lunar Symposium.

Reiss, P. et al. (2014) ‘Flowability of lunar regolith simulants under reduced gravity and vacuum in hopper-based conveying devices’, Journal of Terramechanics, 55, pp. 61–72. doi: 10.1016/j.jterra.2014.04.005.

Reiss, P. and Hoehn, A. (2014) ‘Evaluation of small-scale penetrators for lunar subsurface investigation’, European Lunar Symposium.

Reiss, P., Hoehn, A. and Henn, N. (2015) ‘Stamp-heater instrument concept for mobile in-situ extraction and analysis of lunar volatiles’, European Lunar Symposium.

Reiss, P. et al. (2016) ‘In-situ thermal extraction and analysis of lunar volatiles with the Lunar Volatiles Scouting instrument’, European Lunar Symposium, p. 60.

Reiss, P. (2017) ‘Simulation and demonstration of the extraction of water from lunar regolith analogues for the ProSPA sample analysis instrument’, European Lunar Symposium.

Reiss, P. et al. (2017) ‘Implications of sample size for the thermal extraction of volatiles from lunar regolith with the PROSPECT instrument package’, Journal of Aerospace Engineering, 30(3), p. 4016088. doi: 10.1061/(ASCE)AS.1943-5525.0000688.

Reiss, P. (2018) ‘A combined model of heat and mass transfer for the in-situ extraction of volatile water from lunar regolith’, Icarus, 306, 1-15. doi: 10.1016/j.icarus.2018.01.020.

Reiss, P. et al. (2018) ‘In-situ hydrogen reduction of lunar polar regolith: from proof of concept experiments with ProSPA to larger scale ISRU demonstrators’, European Lunar Symposium.

Reiss, P., Grill, L. and Barber, S. (2018) ‘Demonstration of volatiles extraction from NU-LHT-2M with the ProSPA instrument breadboard’, European Lunar Symposium.

 

Co-Author-Publikationen

Barber, S. J. et al. (2015) ‘ProsPA : a miniature chemical laboratory for in-situ assessment of lunar volatile resources’, European Lunar Symposium.

Barber, S. et al. (2016) ‘ProSPA: the chemical laboratory for in-situ assessment of lunar volatile resources within ESA’s PROSPECT package’, European Lunar Symposium, p. 47.

Barber, S. J. et al. (2017) ‘ProSPA: the science laboratory for the processing and analysis of lunar polar volatiles within PROSPECT’, Lunar and Planetary Science Conference XLVIII, p. 2171.

Barber, S. et al. (2017) ‘PROSPECTing for lunar polar volatiles: the ProSPA miniature in-situ science laboratory’, European Lunar Symposium.

Barber, S. et al. (2018) ‘ProSPA: analysis of lunar polar volatiles and ISRU demonstration on the Moon’, 49th Lunar and Planetary Science Conference, p. 2172.

Barber, S. et al. (2018) ‘ProSPA: an instrument for lunar polar volatiles prospecting and in situ resource utilization proof of concept’, European Lunar Symposium.

Biswas, J. et al. (2017) ‘Application of the LVS subsurface probe on the LUVMI rover for a lunar volatiles exploration mission’, European Lunar Symposium.

Biswas, J. et al. (2018) ‘Mobile in-situ exploration of lunar volatiles with the LVS on LUVMI’, European Lunar Symposium.

Carpenter, J. D. et al. (2014) ‘Accessing and assessing lunar resources with PROSPECT’, Annual Meeting of the Lunar Exploration Analysis Group. Laurel, Maryland.

Deiml, M. et al. (2015) ‘Development and evaluation of thermal model reduction algorithms for spacecraft’, Acta Astronautica, 110, pp. 168–179. doi: 10.1016/j.actaastro.2015.01.018.

Fisackerly, R. et al. (2015) ‘Accessing, drilling and operating at the lunar south pole: status of European plans and activities’, 13th Symposium on Advanced Space Technologies in Robotics and Automation. Noordwijk.

Gancet, J. et al. (2017) ‘LUVMI: a concept of low footprint lunar volatiles mobile instrumentation’, 13th Symposium on Advanced Space Technologies in Robotics and Automation.

Hager, P. and Reiss, P. (2013) ‘Verification of a thermal simulation tool for moving objects on the lunar surface’, EGU General Assembly, p. 9434.

Killian, M. and Reiss, P. (2015) ‘Investigating thermal aspects of lunar traverses for scientific exploration’, European Lunar Symposium.

Pitcher, C. et al. (2018) ‘Volatile extraction and detection from frozen lunar regolith simulants in preparation for the LUVMI rover’, European Lunar Symposium.

Richter, L. et al. (2017) ‘OHB instruments development for volatile scouting on the Moon’, Proceedings of the 68th International Astronautical Congress, p. 40120.

Sargeant, H. et al. (2018) ‘Hydrogen reduction of ilmenite in a static system for a lunar ISRU demonstration’, European Lunar Symposium.

Urbina, D. et al. (2017) ‘LUVMI : an innovative payload for the sampling of volatiles at the lunar poles’, Proceedings of the 68th International Astronautical Congress, p. 41392.